
Example-based Motion Synthesis via Generative Motion Matching

WEIYU LI∗†, Shandong University, China
XUELIN CHEN∗‡, Tencent AI Lab, China
PEIZHUO LI, ETH Zurich, Switzerland
OLGA SORKINE-HORNUNG, ETH Zurich, Switzerland
BAOQUAN CHEN, Peking University, China

Skeleton(c) Key frame-guided generation (d) Infinite looping

(a) Random generation (b) Motion completion

Fig. 1. Our generative framework enables a variety of example-based motion synthesis tasks, that usually require long offline training for existing data-driven
methods. Given a single or few examples, even with a highly complex skeletal structure (middle), our framework can (a) synthesize a high-quality novel
motion, within a fraction of a second; (b) complete a partial motion (lower-body motion) with example motion patches; (c) synthesize a coherent sequence
guided by a sparse set of keyframes (in blue clothes); (d) generate an infinitely looping animation that starts and ends with a specified pose (in blue clothes).

We present GenMM, a generative model that “mines” as many diverse mo-
tions as possible from a single or few example sequences. In stark contrast to
existing data-driven methods, which typically require long offline training
time, are prone to visual artifacts, and tend to fail on large and complex
skeletons, GenMM inherits the training-free nature and the superior qual-
ity of the well-known Motion Matching method. GenMM can synthesize a
high-quality motion within a fraction of a second, even with highly complex
and large skeletal structures. At the heart of our generative framework lies

∗Joint first authors
†Work done during an internship at Tencent AI Lab
‡Corresponding author

Authors’ addresses: Weiyu Li, weiyuli.cn@gmail.com, Shandong University, China;
Xuelin Chen, xuelin.chen.3d@gmail.com, Tencent AI Lab, China; Peizhuo Li, peizhuo.
li@inf.ethz.ch, ETH Zurich, Switzerland; Olga Sorkine-Hornung, sorkine@inf.ethz.ch,
ETH Zurich, Switzerland; Baoquan Chen, baoquan@pku.edu.cn, Peking University,
China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART1 $15.00
https://doi.org/10.1145/3592395

the generative motion matching module, which utilizes the bidirectional
visual similarity as a generative cost function to motion matching, and op-
erates in a multi-stage framework to progressively refine a random guess
using exemplar motion matches. In addition to diverse motion generation,
we show the versatility of our generative framework by extending it to
a number of scenarios that are not possible with motion matching alone,
including motion completion, key frame-guided generation, infinite looping,
and motion reassembly.

CCS Concepts: • Computing methodologies→ Motion processing.

Additional Key Words and Phrases: motion synthesis, generative model,
motion matching

ACM Reference Format:
Weiyu Li, Xuelin Chen, Peizhuo Li, Olga Sorkine-Hornung, and Baoquan
Chen. 2023. Example-based Motion Synthesis via Generative Motion Match-
ing . ACM Trans. Graph. 42, 4, Article 1 (August 2023), 12 pages. https:
//doi.org/10.1145/3592395

1 INTRODUCTION
The generation of natural, varied, and detailed motions is a core
problem in computer animation. Acquiring large volumes of motion
data via a motion capture (mocap) system or manually authoring
sophisticated animations is known to be costly and tedious. As
such, motion datasets are generally limited, especially in terms of

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0003-4500-4905
HTTPS://ORCID.ORG/0009-0007-0158-9469
HTTPS://ORCID.ORG/0000-0001-9309-9967
HTTPS://ORCID.ORG/0000-0002-8089-3974
HTTPS://ORCID.ORG/0000-0003-4702-036X
https://orcid.org/0000-0003-4500-4905
https://orcid.org/0009-0007-0158-9469
https://orcid.org/0000-0001-9309-9967
https://orcid.org/0000-0002-8089-3974
https://orcid.org/0000-0003-4702-036X
https://doi.org/10.1145/3592395
https://doi.org/10.1145/3592395
https://doi.org/10.1145/3592395

1:2 • Weiyu Li, Xuelin Chen, Peizhuo Li, Olga Sorkine-Hornung, and Baoquan Chen

the diversity of style, skeletal structures, or creature types, which
hamper the effectiveness of existing data-driven motion synthesis
methods. Advancing generative abilities of synthesizing diverse and
extensive motions from limited example sequences has therefore
become an important research problem.
In recent years, deep learning has taken the field of computer

animation by storm. Deep learning methods have demonstrated the
ability to synthesize diverse and natural motions when training on
large and comprehensive datasets [Holden et al. 2016, 2017; Henter
et al. 2020; Tevet et al. 2022a; Raab et al. 2023a; Tseng et al. 2022].
More encouragingly, the success was recently reproduced in an
extremely reduced setting [Li et al. 2022], where only one sequence
is provided for training, yet, the neural network learns the sample’s
internal distribution, and demonstrates the ability to synthesize
diverse variants of the input example sequence. Nevertheless, neural
motion synthesis methods carry several drawbacks that limit their
applicability in practice: (i) they require long training time; (ii) they
are prone to visual artifacts such as jittering or over-smoothing; (iii)
they do not scale well to large and complex skeleton structures.

In this paper, we explore an alternative approach to the problem.
We revisit the classical idea in computer animation – motion nearest
neighbors [Lee et al. 2010], which dates back long before the deep
learning era and on which the state-of-the-art industrial solution for
character animation –motion matching – was founded [Büttner and
Clavet 2015], delivering exceptionally high-quality motion synthesis.
Motion matching produces character animations that appear natural
and respond to varying local contexts. Using a large mocap database
as a local approximate of the entire natural motion space, motion
matching simply searches for a motion patch that best fits a given
local context. The dependence on a large dataset is, however, at odds
with our goal: we are after a generative model that “mines” as many
diverse motions as possible from a single or few examples. Inspired
by the work of Granot et al. [2022] in image synthesis, we take the
following insights for casting motion matching into our generative
model and yield generative motion matching (GenMM, pronounced
"gem"). First, to retain the motion quality of motion matching and
inject generative capabilities, we exploit bidirectional similarity in-
troduced in [Simakov et al. 2008] as a new generative cost function
for motion matching. The bidirectional similarity serves the purpose
of comparing the patch distribution between the example and the
synthesized sequence. Specifically, it encourages the synthesized se-
quence to contain only motion patches from the example sequences,
and vice versa, the examples should only contain motion patches
from the synthesis. Consequently, no artifacts are introduced in
the synthesis, and importantly, no critical motion patches are lost
either. Second, we use a multi-stage framework to progressively
synthesize a motion sequence that has minimal patch distribution
discrepancy with the example, capturing patch distributions from
varying temporal resolutions. Lastly, we utilize the observation that
the generative diversity of GAN-based methods stems primarily
from the unconditional noise input [Granot et al. 2022]: we input
noise to the coarsest synthesis stage, and achieve highly diverse
synthesis results.

We demonstrate that GenMM is more than competent in produc-
ing diverse motions from only a small set of input examples. Notably,
compared to existing works, GenMM offers several advantages:

• GenMM runs very fast, without any pre-training. A motion
sequence can be synthesized within a fraction of a second.

• GenMM inherits the appealing nature of motion matching,
producing motions of high quality and fidelity.

• GenMM scales smoothly to highly complex skeletons (see the
character with 433 joints in Figure 1), where neural networks
struggle [Li et al. 2022].

• It is easy to extend GenMM to inputs with multiple sequences
and encourage the synthesis to cover all examples, which is
non-trivial for GAN-based methods [Li et al. 2022].

In addition to diverse motion generation, we also demonstrate the
versatility of our generative framework by extending to an array of
scenarios that are unachievable with motionmatching alone, such as
motion completion, key frame-guided generation, infinite looping,
and motion reassembly, all enabled by the shared foundation of
generative motion matching.

2 RELATED WORK
We review the most related work on kinematics-based motion syn-
thesis.We also briefly cover recent advancements in image synthesis,
particularly patch-based ones, from which we take inspiration.

Motion Synthesis. Generating novel motions via diversifying ex-
isting ones can date back to the work of Perlin and Goldberg [1996],
where the Perlin noise [Perlin 1985] is added to motion clips for ob-
taining variants with local diversity. Pullen and Bregler [2002] show
that mocap data can be used to enhance a coarse key-framed motion,
by matching low-frequency patches and blending high-frequency
details. Li et al. [2002] construct a graph model by matching similar
patches in the dataset, and create a stochastic model for generating
random samples with local and structural variations. Due to the
use of a linear dynamics model, the model requires a large train-
ing dataset to achieve satisfactory results and faces a dilemma of
quality and diversity. Contemporarily, motion graphs [Kovar et al.
2002; Lee et al. 2002; Arikan and Forsyth 2002] use a similar discrete
graph model while keeping it deterministic, namely a state machine,
and demonstrate characters that respond interactively to the user
input. However, the discrete space inherently limits their agility
and responsiveness. Hence, efforts on summarizing large datasets
into statistical models have also been made since then [Pullen and
Bregler 2000; Brand and Hertzmann 2000; Bowden 2000; Grochow
et al. 2004; Chai and Hodgins 2007; Wang et al. 2007]. Instead of
sorting the dataset into an organized but discrete structure or a
statistical model, motion nearest neighbors [Lee et al. 2010; Levine
et al. 2012] operate directly on contiguous motion fields to learn a
control policy that interpolates the nearest neighbors of the current
pose. Following that, [Büttner and Clavet 2015] introduce Motion
Matching, which is a method searching a large database of ani-
mations for the animation which best fits the given context. This
method has quickly been adopted by many studios due to its sim-
plicity, flexibility, controllability, and the quality of the motion it
produces [Harrower 2018; Buttner 2019]. Motion matching plays
back the animation data stored in the database as-is, rendering it
the de facto state-of-the-art in the industry. Nevertheless, its goal
differs significantly from ours, as we target a generative model that
synthesizes diverse motions from examples.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-based Motion Synthesis via Generative Motion Matching • 1:3

…

Stage 1Example motion 𝐓𝟏 Example motion 𝐓𝟐

Generative
motion matching

Example motion 𝐓𝑺

Input "𝐅𝟏 Synthesized 𝐅𝑺Synthesized 𝐅𝟏 Synthesized 𝐅𝟐

Generative
motion matching

Generative
motion matching

Stage 2 Stage 𝑺

U
ps

am
pl

e

U
ps

am
pl

e

Fig. 2. Multi-stage motion synthesis. Starting from the coarsest stage, the generative motion matching at each stage 𝑠 takes in an upsampled version of the
output from the preceding stage as the initial guess, refines it with motion patches in the example motion T𝑠 , and outputs a finer motion sequence F𝑠 . Note
the coarsest stage is purely generative, as the input is merely a Gaussian noise.

Recent advancements in deep learning also greatly impact the
motion synthesis field. Early attempts [Holden et al. 2015, 2016] use
deep neural networks to learn from animation data. Deep neural
networks can learn a strong prior from a large dataset [Rempe et al.
2021; He et al. 2022], solving many ill-posed generative tasks includ-
ing motion prediction [Fragkiadaki et al. 2015; Pavllo et al. 2018],
motion in-betweening [Harvey et al. 2020; Duan et al. 2022; Qin et al.
2022], motion reassembling [Jang et al. 2022; Lee et al. 2022], text-
guided motion synthesis [Tevet et al. 2022a,b; Zhao et al. 2023], etc.
Holden et al. [2015, 2016] apply modern deep learning techniques
for learning from animation data. Meanwhile, combining motion
matching with deep learning has also resulted in variants that are
computationally less expensive [Holden et al. 2020] and more versa-
tile [Habibie et al. 2022]. Notably, all these works require a large and
comprehensive dataset for training. Another noticeable line of work
adapts deep reinforcement learning techniques to train a physically
simulated character with a small set of example motions [Peng et al.
2018, 2021]. More recently, [Li et al. 2022], the most related work to
us, proposes to use a patch GAN-based [Isola et al. 2017; Shaham
et al. 2019] approach to train a generative model with a single ex-
ample. Concurrently, Raab et al. [2023b] introduce a diffusion-based
model that learns the internal motifs of a single motion clip for pro-
ducing diverse outputs. Nonetheless, these two methods struggle to
produce results with sharp motions, and are not suitable for training
with multiple examples due to the discontinuous underlining latent
space presented to it. We show the superiority of our method over
GANimator by an in-depth comparison in Section 4.1.

Image Synthesis. Our work adopts several algorithmic designs
from texture image synthesis, that shares a similar goal with motion
synthesis. For an in-depth survey of this extensive body we refer
readers to surveys [Wei et al. 2009; Barnes and Zhang 2017]. The
image pyramid, also known as progressive generation [Karras et al.
2018] in deep learning, had been used in texture synthesis long
ago. Heeger and Bergen [1995]; De Bonet [1997] use a Laplacian
pyramid [Burt and Adelson 1987] for texture synthesis, realizing
progressive generation on the spatial frequency domain. Wei and
Levoy [2000] use a Gaussian pyramid for a similar purpose. Han
et al. [2008] push the multi-scale generation to a new height, where
gigapixel-sized images with great details can be synthesized.We also
adopt the progressive synthesis, allowing our generative motion
matching module to capture details of different levels. Progressive

synthesis has also become popular in today’s era of deep learning,
leading to impressive generative models that learn to progressively
refine random noise into images resembling a single natural image.
Specifically, a series of GANs [Goodfellow et al. 2014] are trained
to capture the patch distribution of the example at varying scales.
Following that, Granot et al. [2022] show that bidirectional visual
similarity [Simakov et al. 2008] can serve the purpose of measuring
the patch distribution discrepancy between the example and the
synthesized image, leading to diverse images of much higher quality
and fast synthesis, compared to GAN-based methods.

3 METHOD
We elaborate details of our generative framework, that can syn-
thesize high-quality motions resembling given examples, in large
quantities and varieties. Although our method can take as input
multiple exemplar motions, in our coverage, to ease the understand-
ing of the algorithm, we mainly describe in the single input setting.
Moreover, the synthesized motion does not need to match exactly
the length of the example and can be of arbitrary length.

3.1 Motion Representation
A motion sequence is defined by a temporal set of𝑇 poses that each
consists of root joint displacements O ∈ R𝑇×3 and joint rotations
R ∈ R𝑇× 𝐽 𝑄 , where 𝐽 is the number of joints and 𝑄 is the num-
ber of rotation features. Instead of directly using the global root
displacements O, we convert O to local root displacements V, that
are temporal-invariant and calculated as the difference between
every two consecutive poses. The joint rotations are defined in the
coordinate frame of their parent in the kinematic chain, and we use
the 6D rotation representation (i.e., 𝑄 = 6) proposed by Zhou et al.
[2019].
As human eyes are rather sensitive to implausible interactions

between the end-effector and the ground, existing neural-based
methods usually establish geometric losses on the locations and
velocities of the end-effectors, i.e., the foot contact loss [Shi et al.
2020; Li et al. 2022; Tevet et al. 2022b], whereas our method does not
demand such a design as the internal structure of exemplar motion
patches, such as the high correlation between the end-effectors and
the root motion, are inherently preserved in the synthesis. That
said, it is also trivial to incorporate foot contact labels as in [Li et al.
2022] into our representation for improvements in rare cases, where

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:4 • Weiyu Li, Xuelin Chen, Peizhuo Li, Olga Sorkine-Hornung, and Baoquan Chen

𝒬

Skeleton 𝐁 Partial-body motions "𝐓!Full-body motion 𝐓!

…

𝑝 𝒬×
𝐽!
+
3 +
𝐶
!

Contact labels 𝐋

T
C

Local root displacements 𝐕3

T

𝑝 𝒬×
𝐽"
+
𝐶
"

T

T

Flatten

Flatten

: Motion patches

#𝐓!" (with root joint)

𝐽

Joint rotations 𝐑

T

#𝐓!#

Fig. 3. Skeleton-aware motion patch extraction. The skeleton is partitioned
into several overlapping skeletal parts (two coloreds on the left), with which
the full-body motion can be split into a set of partial-body motions accord-
ingly. Then motion patches (yellow boxes) with a temporal size of 𝑝 frames
can be extracted from each partial-body motion.

sliding feet could occur in the synthesis with large root-motion
examples. The contact label enables the IK post-process to avoid
floating feet. Specifically, the contact labels L can be easily retrieved
from the input motion by setting a threshold of the magnitude of
the velocity. Assume the number of foot joints is 𝐶 , for each foot
joint at a timestamp, we calculate a binary vector and append it to
the per-frame feature (See Figure 3 and 4).
For convenience, we letM𝐻 ≡ R𝐻×(𝐽 𝑄+3+𝐶) denote the metric

space of concatenated motion features of 𝐻 frames, T ≡ [R,V] ∈
M𝑇 the original input motion features, T𝑖 ∈ M𝑇𝑖 a corresponding
downsampled version of the input, F ∈ M𝐹 the synthesized motion
features of 𝐹 frames, and F𝑠 a corresponding downsampled version
of F.

3.2 Multi-stage Motion Synthesis
Figure 2 presents the overall pipeline of our approach, which con-
sists of 𝑆 stages to progressively synthesize a motion of 𝐹 frames.
Specifically, given an input motion, we build an exemplar pyra-
mid {T1, ...,T𝑆 }, where T𝑆 = T is the original input sequence and
T𝑠 ∈ M𝑇𝑠 is T𝑠+1 downsampled by a factor 𝑟 > 1. Then, a synthe-
sis pyramid {F1, ..., F𝑆 }, where F𝑆 ∈ M𝐹 is the final synthesized
sequence of 𝐹 frames and F𝑠 ∈ M𝐹𝑠 is an intermediate sequence
of 𝐹 · 𝑟𝑠−𝑆 frames, will be synthesized in a coarse-to-fine manner,
starting from the coarsest stage and up to the finest. At each stage 𝑠 ,
the generative motion matching module (Section 3.3) takes in an up-
sampled version of the output from the preceding stage as the initial
guess, F̃𝑠 = F𝑠−1 ↑𝑟 , refines it with exemplar motion patches in T𝑠 ,
and outputs a finer motion sequence F𝑠 . Note that the synthesis at
the coarsest stage is purely generative, as the input is merely a noise
drawn from a Gaussian distribution, i.e., F̃1 ∼ N(𝜇, 𝜎2) ∈ M𝐹1 .

3.3 Generative Motion Matching
Typically, patch-based image synthesis consists of three steps, namely
the patch extraction, nearest neighbor matching, and blending, that

Synthesized motion 𝐅𝒔

𝒀𝒃

𝑿
𝒃

Example motion 𝐓𝒔

Generative matching and blending

Extract
patches

Initial guess $𝐅𝒔

Avg.
voting

Contact labels 𝐋

C
3Local root displacements 𝐕

F

J

Joint rotations 𝐑 𝒬

F

F

Extract
patches

Normalized
distance matrix

)𝐃𝒃

: Aggregate nearest patches

Fig. 4. Generative matching and blending. Each motion patch in the initial
guess finds the best-matchedmotion patch in the examplemotion, according
to the normalized distance matrix. Then we blend the overlapping matched
patches to form a novel partial motion. Finally, we blend multiple resultant
partial motions to get the final full-body motion (see right).

work in sequence to produce a converging result in multiple itera-
tions. Our method follows a similar approach but with algorithmic
designs specific to our task. Specifically, at each stage 𝑠 , the following
steps are invoked sequentially during 𝐸 iterations.

Skeleton-aware Motion Patch Extraction. A motion patch can be
defined trivially as a sub-sequence of 𝑝 consecutive frames in the
example sequence, which is a common practice in motion synthe-
sis [Li et al. 2022; Büttner and Clavet 2015]. While our approach
can simply work with this definition, we further propose to extract
skeleton-aware motion patches from the motion sequence, which
decomposes the skeleton into multiple sub-sets, i.e., skeletal parts,
instead of treating it as a whole, and eventually leads to more diverse
poses. Specifically, let B denote the skeletal tree used by the exam-
ple full-body motion T𝑠 , a set of skeletal parts {B̄1, ..., B̄𝐵}, where
B̄𝑏 ⊂ B is a sub-tree of the whole skeleton and has 𝐽𝑏 joints, can be
defined to divide the full-body motion into a set of partial-body mo-
tions {T̄1

𝑠 , ..., T̄
𝐵
𝑠 }, from which we crop sub-sequences of 𝑝 frames

with stride size 1 as our motion patches (See Figure 3).
Usually, skeletons across different animations do not necessarily

follow specific rules and can be of extremely high variability, for
example, bipeds vs. hexapods, a pure biological skeleton vs. one
with more artistic joints, etc. Hence, our approach allows the user
to manually divide the whole skeletal structure into sub-parts with
overlapping joints, similar as in [Jang et al. 2022; Lee et al. 2022].

Generative Matching. Let 𝑋 denote the set of motion patches
extracted from F̃𝑠 , 𝑌 the set of motion patches extracted from the
example motion T𝑠 . We calculate pairwise patch distance matrices
using squared-𝐿2 distance, which provides the foundation for the
measurement of the similarity between each exemplar motion patch
and each synthesized motion patch. Note that the patch distance
matrix is calculated per skeletal part:

𝐷𝑏𝑖,𝑗 = ∥𝑋𝑏𝑖 − 𝑌𝑏𝑗 ∥
2
2, (1)

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-based Motion Synthesis via Generative Motion Matching • 1:5

Synthesized sequence 2

433-joint skeleton

143-joint skeleton

Synthesized sequence 1

Synthesized sequence 1

Synthesized sequence 2

Fig. 5. From a single example, our framework generates, within a second, diverse motion sequences for even highly complex and large skeletons, including the
animation of the clothes and the wings. Please refer to the accompanying video for more animation results.

where 𝑋𝑏 and 𝑌𝑏 denote the set of motion patches extracted from
corresponding partial-body motions. Then, the bidirectional simi-
larity as in [Simakov et al. 2008; Granot et al. 2022] is introduced to
encourage that all exemplar motion patches appear in the synthesis
and all motion patches in the synthesis do not deviate from the
example, i.e., high completeness and coherence. This is achieved
by normalizing the distance matrices using a per-example-patch
factor:

�̂�𝑏𝑖,𝑗 =
𝐷𝑏
𝑖,𝑗

(𝛼 + minℓ (𝐷𝑏ℓ,𝑗))
, (2)

where 𝛼 controls the degree of completeness, and smaller 𝛼 encour-
ages completeness. An in-depth study on the effect of 𝛼 is conducted
in Section 4.3.

Blending. For each motion patch in 𝑋𝑏 , we find its nearest (as de-
fined by Equation 2) motion patch in 𝑌𝑏 , and then blend the values
of collected motion patches using average voting, forming a synthe-
sized partial-body motion F̄𝑏 . Finally, we average the values over
overlapping joints between skeletal parts to assemble all synthesized
partial-body motions into the final result F𝑠 (See Figure 4).

3.4 Extension to More Settings
Our method can also be easily extended for various settings.

Skeleton Partition for Motion Patches. In addition to the skeleton-
aware motion patch defined above, our method can also work with

the traditional definition of a motion patch, i.e., treating the skeleton
as a whole and then extracting 𝑝 consecutive poses.

Multiple Examples. As aforementioned, our method can not only
be applied to a single motion input but also works with multiple
sequences of different numbers of frames. This can be achieved by
simply extracting motion patches from all input motions to form
the set of exemplar patches used in Equation 1. In this setting, the
completeness control knob 𝛼 plays a crucial role in ensuring that
all motion patches across examples are utilized in the output.

Heterogeneous Skeletons. Interestingly, under the setting of multi-
ple examples, the skeletons across different motions do not neces-
sarily share the same one. For example, we can take motion clips of
a monster and a zombie, and synthesizes a moving Frankenstein, via
harmonizing different partial-body motions extracted from these
two creatures. To achieve this, the user can split the skeleton of
each input with overlap and manually specify the skeletal parts of
interest to be used in the generative motion matching and blending.
The overlapping region plays a crucial role in bridging different
skeletal parts during the generation process. Then, our method can
synthesize the novel motion for the new creature by combining the
partial-body motions as discussed in Section 3.3.

4 EXPERIMENTS
We evaluate the effectiveness of our method on example-based mo-
tion synthesis, compare to other motion generation techniques, and

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:6 • Weiyu Li, Xuelin Chen, Peizhuo Li, Olga Sorkine-Hornung, and Baoquan Chen

Example sequence

GANimator [2022]

MotionTexture [2002]

acRNN [2018]

Ours

Fig. 6. Visual comparisons. MotionTexture [2002] generates motions with unnatural transitions. acRNN [2018] produces noisy motions or sometimes quickly
converges to a static pose. GANimator [2022] struggles to handle complex skeletons, producing over-smoothing results. Our method outperforms these
methods with diverse and high-quality results, where highly dynamic motions are well preserved. Please refer to the accompanying video for animation results.

demonstrate its versatility by applying it in various settings and ap-
plications. We highly recommend readers refer to the accompanying
video for more qualitative evaluations. Code and data will be released
to ease the understanding of our implementation and facilitate future
studies.

Data. We collected a diverse set of example animations featuring
varied motion styles and highly complex and large skeletal struc-
tures from Mixamo [2022] and Truebones [2022]. The motion styles
we experimented with include sharp motions of a popping dance,
subtle motions of fanning wings, etc. Some examples are authored
with highly sophisticated skeletal structures, such as the 433-joint
and 143-joint skeletons as visualized in Figure 5. The number of
frames ranges from 140 to 1000 frames at 30 fps.

Implementation Details. Our framework is lightweight and does
not require any training. Due to its simplicity and efficiency, we
simply implement our method with Python. We also develop an add-
on in the open source software Blender [Blender Online Community
2023], which is ready to take animations from users and synthesizes
diverse and high-quality variants. In our implementation, a motion
sample with around 1000 frames can be generated in ∼ 0.2s with
an Apple M1 CPU or ∼ 0.05s with a modern GPU (NVIDIA V100).
By default, we run experiments using an Apple M1 CPU, except

that the comparison experiments are conducted using an NVIDIA
V100 GPU for fair comparisons with neural network-based methods.
We set the length of T1 at the coarsest stage to 𝐾 times the patch
size 𝑝 . Thus the receptive field (a similar concept as in the image)
always occupies the same proportion of example motions with
different lengths. Then, T1 is gradually upsampled using the factor
𝑟 until it reaches the final length of T𝑆 . Unless otherwise specified,
we use a patch size 𝑝 = 11, 𝐾 = 4, a completeness control knob
𝛼 = 0.01 and a number of iterations 𝐸 = 5. These are the empirically
best hyper-parameters we have found. For more discussions on the
hyper-parameters, please refer to the supplementary material.

4.1 Novel Motion Synthesis
We first evaluate the performance of our framework on novel mo-
tion synthesis, and compare it to a classical statistical model and
recent neural-based models, namely MotionTexture [Li et al. 2002],
acRNN [Zhou et al. 2018] and GANimator [Li et al. 2022].

Settings. Although our method can use multiple inputs, for fair
comparisons, we conduct the evaluation on divers motion synthesis
from a single example and disable the skeleton-aware motion patch
extraction. We use three example sequences containing highly dy-
namic and agile movements for evaluation. The character consists

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-based Motion Synthesis via Generative Motion Matching • 1:7

Example sequence

Ours (with skeleton-aware motion patch extraction)

Ours (without skeleton-aware motion patch extraction)

Skeleton parts

Fig. 7. The effectiveness of skeleton-aware motion patch extraction. An artist manually divides the skeleton into three overlapping parts (top left). Given an
example of a character waving two hands simultaneously, only a sequence with two waving hands can be synthesized without the skeleton-aware component.
However, with the skeleton-aware motion patch extraction, a more diverse sequence, including waving with only one hand (in red boxes), can be generated.

of 65 joints, and each sequence has around 500 frames. For each ex-
ample sequence, we use all methods to synthesize a novel sequence
that doubles the length of the example.

Qualitative Comparison. (i) To accomplish diverse motion synthe-
sis, MotionTexture organizes similar motion patches from training
motions into linear dynamics models known as textons, and mod-
els the probability of transition between textons using a Markov
Chain. However, it faces the challenge of balancing diversity and
quality, particularly when there is only one example sequence due
to the choice of linear dynamics model. We follow the procedure
as done in [Li et al. 2022] to apply MotinTexture to a single ex-
ample. As a result, MotionTexture produces unnatural transitions
between textons. (ii) acRNN uses an RNN-based network structure.
The lack of data leads to a model that is prone to overfitting and
is not robust to perturbation or error accumulation. Consequently,
acRNN can only stably generate a limited number of frames. (iii)
GANimator utilizes a series of GANs to capture the distribution of
motion patches at different scales, in order to progressively synthe-
size motions that closely resemble the input. In our experiments
with complex and large skeletons, as shown in Table 3, GANimator
struggles to produce high-quality results, often resulting in jittery
or over-smoothed motions. Additionally, it requires a significant
amount of training time, typically from several hours to a day. In
contrast, our method can adapt to these complex skeletal structures
and various motion styles, and synthesize diverse and high-quality
variations as shown Figure 6. Notably, highly dynamic motions, in
particular sharp and agile movements, are well preserved in our
synthesized results. For more qualitative results, please refer to the
accompanying video.

Table 1. Quantitative comparisons on single example-based generation.

Coverage Set
Div.

Global
Patch Dist.

Local
Patch Dist.

Training
Time

Inference
Time

MotionTexture [2002] 84.12 0.05 1.12 1.13 32.3s 0.03s
MotionTexture (Single) 100.00 0.01 0.45 0.44 0.08s 0.07s
acRNN [2018] 5.13 0.75 13.62 13.55 25 hrs 0.21s
GANimator 49.07 0.24 2.18 2.08 6 hrs 0.12s
Ours 99.89 0.28 0.22 0.18 N/A 0.08s

Quantitative Comparison. Measuring the quality of generated re-
sults against a few examples is known to be difficult [Li et al. 2022].
As one of the pioneers, GANimator uses a combination of estab-
lished metrics, namely coverage, diversity, and reconstruction loss,
to rate the performance, since a single metric does not suffice the
need of measuring the overall quality. However, the reconstruction
loss is only suitable as a quality indicator for neural network-based
methods. The diversity is measured with the average distance be-
tween generated motion patches and their nearest neighbor in the
examples, and different motion patch size corresponds to local and
global diversity. As a result, they tend to increase if the generated
motion becomes unnatural, and favor results with minor perturba-
tion or over-smoothed results generated by neural networks. We
thus use neutral names for the diversity metrics, namely local patch
distance and global patch distance in our experiments. We refer read-
ers to [Li et al. 2022] for more details about these metrics. In addition,
following the well-established metric in 2D image synthesis [Sha-
ham et al. 2019], we also report the set diversity, which measures
the diversity among the generated results and is calculated as the
averaged standard deviation of the rotation of each joint over 200
synthesized motions and normalized by the standard deviation of

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:8 • Weiyu Li, Xuelin Chen, Peizhuo Li, Olga Sorkine-Hornung, and Baoquan Chen

Ours

GANimator [2022]

Synthesized motion

Coverage of example 1 Coverage of example 2 Coverage of example 3

Synthesized motion

Coverage of example 1 Coverage of example 2 Coverage of example 3

Fig. 8. Comparison under the multi-example setting. GANimator struggles to incorporate all examples, resulting in the loss of a significant portion of exemplar
motion patches in the synthesis (marked in gray) and a low coverage score. In contrast, our method effectively covers all examples (marked as colorized),
resulting in high coverage score.

all joint rotations of the input example. Note that, while this metric
also has a preference for noisy output, we mainly rate the methods
using the combination of the coverage and set diversity.
The quantitative comparison results are shown in Table 1. No-

tably, our method produces a significantly high coverage score,
while still exhibiting sufficiently diverse results (evidenced by a
high set diversity score). For a more comprehensive comparison of
the quality, we refer the readers to the accompanying video. Note,
we also report the computation time in Table 1, where we can see
that our method is highly efficient, as it is both training-free and
extremely fast during inference.

4.2 More Generation Settings
In addition to the basic setting used above, we further evaluate our
method in the following aspects.

Skeleton-aware Motion Patches. In addition to the temporal axis,
our method can also extract motion patches from examples along
the skeletal axis, thus allowing obtaining diversity also on the spatial
dimension as shown in Figure 7 and the accompanying video.

Multiple Examples. Unlike existingmethods, which struggle when
presented with multiple example sequences due to the lack of ex-
plicit encouragement of completeness, our method can handle multi-
ple examples with the completeness control knob in Equation 2. We
collect five dancing sequences ranging from 120-220 frames at 30 fps.
It can be seen in Table 2 that whenmore examples are given, existing
methods generate results with lower coverage while our method
remains a high coverage. MotionTexture produces unnatural transi-
tions, similar to its results in the single-example setting. acRNN fails
on the task and produces noisy motions due to the diverse but scarce

Table 2. Coverage rates of different numbers of example sequences.

Number of Example Sequences
2 3 4 5

MotionTexture [2002] 100 29.19 10.03 27.69
acRNN [2018] 7.34 4.02 1.38 0.41
GANimator [2022] 63.55 23.90 17.30 16.22
Ours 99.71 99.95 99.91 99.64

Table 3. Coverage rate on skeletons with different complexity.

Number of Joints
24 65 433

GANimator [2022] 92.10 44.10 2.38
Ours 97.82 99.84 86.90

motion data. GANimator requires a corresponding pre-defined la-
tent variable for each sequence. However, the structure of the given
sequences is not taken into consideration for defining these latent
variables, hindering the network from generating various and com-
plete samples. In contrast, our method produces motions that cover
a large portion of the examples with a properly set completeness
control knob as shown in Figure 8 and the accompanying video.

Complex Skeletons. Our method can work with skeletons of high
complexities (See Figure 5), on which the GAN-base method GAN-
imator fails to produce reasonable results as demonstrated in the
accompanying video. Specifically, we experiment with skeletons
consisting of 24, 65, and 433 joints. It can be seen in Table 3 that
GANimator performs normally on the 24-joint skeletons, while
its performance drops dramatically when presented with complex

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-based Motion Synthesis via Generative Motion Matching • 1:9

Table 4. The different settings of hyperparameters.

Coverage Set Diversity Global Patch Dist. Local Patch Dist.

Ours (not use 𝛼) 87.45 0.27 0.18 0.17
Ours (𝛼 = 5) 87.89 0.27 0.18 0.17
Ours (𝛼 = 0.5) 88.47 0.27 0.18 0.17
Ours (𝛼 = 0.05) 93.80 0.27 0.18 0.17
Ours (𝛼 = 0.005) 99.96 0.27 0.30 0.23
Ours (𝛼 = 0.0) 36.78 0.25 2.17 1.60

Ours (𝐾 = 20) 87.74 0.25 1.03 0.71
Ours (𝐾 = 15) 92.04 0.26 0.73 0.54
Ours (𝐾 = 10) 96.07 0.27 0.42 0.36

Ours (𝑝 = 23) 99.85 0.26 0.27 0.24
Ours (𝑝 = 17) 99.88 0.26 0.23 0.21
Ours (𝑝 = 5) 99.66 0.27 0.41 0.32

Ours (𝑟 = 2) 99.61 0.27 0.22 0.20
Ours (𝑟 = 4) 99.16 0.27 0.34 0.28
Ours (𝑟 = 8) 97.97 0.26 0.57 0.42

skeletons. Whereas our method maintains a consistent performance
for different skeletons, evidenced by the fluttering effects of the
skirt and dragon wings in the accompanying video.

4.3 Effects of Hyper-parameters
Our framework involves several hyper-parameters during the syn-
thesis process. In this section, we discuss the effects of these hyper-
parameters. The quantitative results are presented in Table 4.

Effects of 𝛼 . As rarely-appearing patches have a larger minimal
distance, the completeness of the synthesis is encouraged by nor-
malizing the distance of patches extracted from examples with their
minimal distance to the initial guess. Therefore, the 𝛼 in Equation 2
serves as a control knob for the completeness of exemplar patches in
the synthesized result. As it restricts the lower bound of the normal-
izing denominator, a smaller 𝛼 value encourages more preservation
of the example content in the synthesis. As shown in Table 4, when
𝛼 decreases to a certain level, a higher coverage score is achieved.
However, if the value 𝛼 is too small, an excessive emphasis on
completeness (especially for patches with almost zero distance to
the generated motion) can overwhelm the similarity measure used
for the matching process, resulting in unstable generation and low-
quality motion (evidenced by low coverage and high patch distances
of the corrupted results)."

Effects of 𝐾 . The ratio of the patch size to the length of input
example motion at the coarsest stage controls the receptive field
for synthesis, similar to the concept in image domain. A larger 𝐾
causes a smaller receptive field, leading to more diverse results. In
particular, a large 𝐾 allows only capturing fine-level movements
and leads to some unnatural transitions, while a small 𝐾 leads to
overfitting of the original sequence. Table 4 shows the global and
local patch distance increase as 𝐾 increases. This is because the
generated result deviates further from the input sequence when the
receptive field is smaller.

Effects of Patch Size 𝑝 . The patch size 𝑝 defines the temporal length
of patches used in the generative matching and blending. Patch size
controls the receptive field jointly with 𝐾 , and a smaller patch size

0

5

10

15

20

25

0 20000 40000 60000 80000 100000

Number of synthesized frames

Time (s) Memory (GB)

Fig. 9. Time and memory consumption with respect to increasing numbers
of generated frames.

leads to a smaller receptive field, which creates less coherent result
as shown by the increase of global and local patch distance in Table 4.

Effects of 𝑟 . The factor 𝑟 controls the step size of transition be-
tween stages. A large step size, controlled by a large 𝑟 , may result in
unstable generation due to big gaps between consecutive scales. On
the other hand, a small step size causes unnecessary running time.

4.4 Time and Memory Consumption
The memory footprint of the distance metrics described in Sec-
tion 3.3 increases as the number of generated frames, 𝐹 , grows. To
further investigate the time and memory consumption, we stress-
test our method under extreme conditions, where 𝐸𝑁 comprises 522
motion frames of a 65-joint character and we set 𝐹 ranging from
1,000 to 100,000. These tests are conducted using an NVIDIA V100
GPU equipped with 32GB memory. Figure 9 illustrates that both
time and memory consumption exhibit a linear growth pattern with
respect to the number of generated frames. Owing to the highly par-
alleled computation of the distance metrics in the GPU, our method
takes only around 3 seconds to synthesize a high-quality sample
even consisting of 100,000 frames.

5 APPLICATIONS
In this section, we demonstrate the versatility of our framework by
adapting it to various applications, such as motion completion, key
frame-guided generation, infinite looping, and motion reassembly.
The results are presented in Figure 10. A more detailed demonstra-
tion is available in the accompanying video.

Motion Completion. Our framework, which utilizes skeleton-aware
motion patch extraction, enables the completion of partial motions
that contain only the movement of specific body parts. For ex-
ample, when a lower-body motion sequence T̄lower is provided,
the upper-body motion can be completed using the example mo-
tion. Specifically, we build a pyramid for the partial-body motion
{T̄lower

1 , ..., T̄lower
𝑆 }, and the corresponding partial motion in the

output F𝑠 is fixed to T̄lower
𝑠 at each stage 𝑠 . Our framework then

automatically synthesizes the movements of the rest by parts, com-
pleting the partial constraints with a coherent and natural motion.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:10 • Weiyu Li, Xuelin Chen, Peizhuo Li, Olga Sorkine-Hornung, and Baoquan Chen

Infinite looping

Motion completion

Motion reassembly

Key frame-guided generation
Key frame #1 Key frame #2

Example 1 Example 2

Fixed：

Fig. 10. Applications. (1) Motion completion. Users can provide the lower-body motion (marked in yellow), and our method completes with diverse motions.
(2) Key frame-guided generation. Given a set of key frames (marked in red boxes), we can generate diverse novel motion sequence that follow the key frame
poses. (3) Infinite looping. By simply specifying the starting and ending pose to be identical, our method can generate a infinitely looping animation, which
can be useful in crowd simulation. (4) Motion reassembly. Given two motion sequences with heterogeneous skeletons, our method can combine them to form
a new creature with coherent and natural motion.

Key Frame-guided Generation. Our method also allows users to
manually specify a sparse set of key frames to guide the content
of the synthesized motion. Our method can then effectively handle
these sparse pose constraints distributed throughout the sequence
and generate smooth, highly-detailed motion. Given a set of key
frames at the coarsest stage, we simply realize it by replacing corre-
sponding frames in F1 with the specified frames, and fixing them
through the whole generation process. Note that these manually
specified key frames should not deviate significantly from the distri-
bution of the poses in the example. In practice, they can be obtained
by simply selecting existing poses in the example, possibly with
slight manual modifications by the user.

Infinite Looping. Our framework can easily synthesize endless
looping motion by fixing the ending pose to be identical to the
beginning pose at every stage in the synthesis. This allows for the
seamless looping of the entire motion sequence. It can be useful
in animation production, such as creating repetitive crowds like
spectators cheering outside an arena.

Motion Reassembly. As aforementioned in Section 3.4, our method
has the ability to synthesize a Frankenstein. We demonstrate an
example that stitches the right arm of a monster to a zombie; See Fig-
ure 10 and the accompanying video. Note the example sequence of
these two characters is different and the zombie does not have any

Fig. 11. Random locomotion generation. Given an example locomotion
sequence of a character walking in a circular path (left), we show a high-
quality novel motion sequence generated by our method, in which the
character walks along a different trajectory (right).

movement in its partially missing right arm, yet our method is still
able to successfully synthesize a natural and meaningful motion.

Random Locomotion Generation. Our method can also generate
high-quality novel motion sequences when given a locomotion clip.
As can be seen in Figure 11, while the example sequence contains a
person walking in a circular path, our method can generate novel

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Example-based Motion Synthesis via Generative Motion Matching • 1:11

Fig. 12. Top: screenshot of our web-based interface, characters in grey
denote synthesized motions. Bottom: screenshot of our Blender add-on, the
synthesized motion is highlighted in the middle.

outputs with a different trajectory (See the difference between the
corresponding trajectories at the top row). More animation results
can be found in the accompanying video.

6 USER INTERFACE
Our framework is general, lightweight, and easy to integrate into
many production tools. For novice users, we build a user-friendly
website where users can upload their motion files and then synthe-
size diverse novel motions with a single click (See the top in Fig-
ure 12). We also develop a Blender add-on for professional artists,
which seamlessly integrates into their existing workflow as demon-
strated at the bottom of Figure 12. Note both interfaces can run
efficiently on a consumer-level laptop. Please refer to the accompa-
nying video for the results.

7 DISCUSSION AND CONCLUSION
We presented a generative framework for synthesizing diverse mo-
tion sequences from only a small set of examples. We achieve this
via injecting generative capabilities into the industry state-of-the-
art technique for character animation – motion matching. As a
result, our framework inherits the training-free nature and superior
quality, and is able to produce a high-quality sample within just a
fraction of a second, even with highly complex and large skeletons.
We demonstrate the utility of our framework on a variety of appli-
cations. Despite its advantages, our method in its current form has
a few shortcomings: It uses a discrete patch distribution, whereas
GANimator [Li et al. 2022] learns a continuous distribution. There-
fore, GANimator can generate novel poses with high likelihood from
the learned distribution. Although the skeleton-aware component
can be a remedy, this capability is missing in our method. Neverthe-
less, we argue that such generalization can be disadvantageous in
motion synthesis, as sequences formed by novel poses often contain

visual artifacts such as jittering and incoherence, which are highly
noticeable to human eyes. We prioritized the motion quality at the
outset, which led us to the motion matching approach.

Our method seeks to synthesize as many variants as can be mined
from the examples, rather than struggle to balance quality with
novelty of motion. As a consequence, although diverse results of
our method are shown, the generative diversity of our method
is lower than that of GANimator. Hence, a future work direction
is to inject the high quality of motion matching into generative
neural models, possibly with discrete neural representation learning
techniques [Van Den Oord et al. 2017], and thus obtain the best of
both worlds.

Our method favors example motions with sufficient intrinsic pe-
riodicity, which has been increasingly recognized as an important
property of common human motion [Holden et al. 2017; Starke
et al. 2022], to generate highly diverse novel variations. It seeks
to exploit such patterns in a single example for mining as many
coherent variations as possible. In extreme cases where the exam-
ple only involves a single pose change, it may be meaningless to
create temporal variations based solely on such input. Nonetheless,
our skeleton-aware component may introduce variations along the
skeletal axis, as evidenced by the asynchronized waving hands in
the supplementary video.
Regarding the manual constraints required in the key frame-

guided application, the manually specified key frames cannot differ
significantly from those example poses as aforementioned, other-
wise the generated sequence may not faithfully follow those con-
straining poses due to the lack of ability to generate completely
novel poses as discussed above.

Last, our method cannot deal with overly long example sequences,
as the normalized similarity matrices grow excessively large. Adopt-
ing approximate nearest neighbors search, such as [Barnes et al.
2009], may help alleviate this issue.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive comments.
This work was supported in part by National Key R&D Program of
China 2022ZD0160801, and the European Research Council (ERC)
under the European Union’s Horizon 2020 Research and Innovation
Programme (ERC Consolidator Grant, agreement No. 101003104,
MYCLOTH). We would also like to thank Han Liu from Tencent AI
Lab for providing the motion data of the avatar Ailing (Figure 1).

REFERENCES
Adobe Systems Inc. 2022. Mixamo. https://www.mixamo.com Accessed: 2022-03-25.
Okan Arikan and David A Forsyth. 2002. Interactive motion generation from examples.

ACM Transactions on Graphics (TOG) 21, 3 (2002), 483–490.
Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. Patch-

Match: A randomized correspondence algorithm for structural image editing. ACM
Transactions on Graphics (TOG) 28, 3 (2009), 24.

Connelly Barnes and Fang-Lue Zhang. 2017. A survey of the state-of-the-art in patch-
based synthesis. Computational Visual Media 3, 1 (2017), 3–20.

Blender Online Community. 2023. Blender - a 3D modelling and rendering package.
Blender Foundation, Blender Institute, Amsterdam.

Richard Bowden. 2000. Learning statistical models of human motion. In IEEE Workshop
on Human Modeling, Analysis and Synthesis, CVPR, Vol. 2000. Citeseer.

Matthew Brand and Aaron Hertzmann. 2000. Style machines. In Proceedings of the 27th
annual conference on Computer graphics and interactive techniques. 183–192.

Peter J Burt and Edward H Adelson. 1987. The Laplacian pyramid as a compact image
code. In Readings in computer vision. Elsevier, 671–679.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://www.mixamo.com

1:12 • Weiyu Li, Xuelin Chen, Peizhuo Li, Olga Sorkine-Hornung, and Baoquan Chen

Michael Buttner. 2019. Machine learning for motion synthesis and character control in
games. Proc. of I3D 2019 (2019).

Michael Büttner and Simon Clavet. 2015. Motion Matching - The Road to Next Gen
Animation. https://www.youtube.com/watch?v=z_wpgHFSWss&t=658s

Jinxiang Chai and Jessica K Hodgins. 2007. Constraint-based motion optimization using
a statistical dynamic model. In ACM SIGGRAPH 2007 papers. 8–es.

Jeremy S De Bonet. 1997. Multiresolution sampling procedure for analysis and synthesis
of texture images. In Proceedings of the 24th annual conference on Computer graphics
and interactive techniques. 361–368.

Yinglin Duan, Yue Lin, Zhengxia Zou, Yi Yuan, Zhehui Qian, and Bohan Zhang. 2022.
A Unified Framework for Real Time Motion Completion. (2022).

Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015. Recur-
rent network models for human dynamics. In Proceedings of the IEEE International
Conference on Computer Vision. 4346–4354.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In NIPS.

Niv Granot, Ben Feinstein, Assaf Shocher, Shai Bagon, and Michal Irani. 2022. Drop
the gan: In defense of patches nearest neighbors as single image generative models.
In Conference on Computer Vision and Pattern Recognition (CVPR). 13460–13469.

Keith Grochow, Steven L Martin, Aaron Hertzmann, and Zoran Popović. 2004. Style-
based inverse kinematics. In ACM SIGGRAPH 2004 Papers. 522–531.

Ikhsanul Habibie, Mohamed Elgharib, Kripasindhu Sarkar, Ahsan Abdullah, Simbarashe
Nyatsanga, Michael Neff, and Christian Theobalt. 2022. A Motion Matching-based
Framework for Controllable Gesture Synthesis from Speech. In ACM SIGGRAPH
2022 Conference Proceedings. 1–9.

Charles Han, Eric Risser, Ravi Ramamoorthi, and Eitan Grinspun. 2008. Multiscale
texture synthesis. In ACM SIGGRAPH 2008 papers. 1–8.

Geof Harrower. 2018. Real player motion tech in’ea sports ufc 3’. Proc. of GDC 2018
(2018).

Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. 2020. Robust
motion in-betweening. ACM Transactions on Graphics (TOG) 39, 4 (2020), 60–1.

Chengan He, Jun Saito, James Zachary, Holly Rushmeier, and Yi Zhou. 2022. NeMF:
Neural Motion Fields for Kinematic Animation. In Advances in Neural Information
Processing Systems.

David J Heeger and James R Bergen. 1995. Pyramid-based texture analysis/synthesis.
In Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques. 229–238.

Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow. 2020. Moglow: Probabilistic
and controllable motion synthesis using normalising flows. ACM Transactions on
Graphics (TOG) 39, 6 (2020), 1–14.

Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa. 2020. Learned
motion matching. ACM Transactions on Graphics (TOG) 39, 4 (2020), 53–1.

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–13.

Daniel Holden, Jun Saito, and Taku Komura. 2016. A deep learning framework for
character motion synthesis and editing. ACM Transactions on Graphics (TOG) 35, 4
(2016), 1–11.

Daniel Holden, Jun Saito, Taku Komura, and Thomas Joyce. 2015. Learning motion
manifolds with convolutional autoencoders. In SIGGRAPH Asia 2015 technical briefs.
1–4.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-Image
Translation with Conditional Adversarial Networks. CVPR (2017).

Deok-Kyeong Jang, Soomin Park, and Sung-Hee Lee. 2022. Motion Puzzle: Arbitrary
Motion Style Transfer by Body Part. ACM Transactions on Graphics (TOG) (2022).

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive Growing
of GANs for Improved Quality, Stability, and Variation. In International Conference
on Learning Representations.

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion Graphs. In Proceedings
of the 29th Annual Conference on Computer Graphics and Interactive Techniques (San
Antonio, Texas) (SIGGRAPH ’02). Association for Computing Machinery, New York,
NY, USA, 473–482. https://doi.org/10.1145/566570.566605

Jehee Lee, Jinxiang Chai, Paul SA Reitsma, Jessica K Hodgins, and Nancy S Pollard. 2002.
Interactive control of avatars animated with human motion data. In Proceedings of
the 29th annual conference on Computer graphics and interactive techniques. 491–500.

Seyoung Lee, Jiye Lee, and Jehee Lee. 2022. Learning Virtual Chimeras by Dynamic
Motion Reassembly. ACM Trans. Graph. 41, 6, Article 182 (2022).

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.
2010. Motion fields for interactive character locomotion. In ACM Transactions on
Graphics (TOG). 1–8.

Sergey Levine, Jack M Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun. 2012.
Continuous character control with low-dimensional embeddings. ACM Transactions
on Graphics (TOG) 31, 4 (2012), 1–10.

Peizhuo Li, Kfir Aberman, Zihan Zhang, Rana Hanocka, and Olga Sorkine-Hornung.
2022. GANimator: Neural Motion Synthesis from a Single Sequence. ACM Transac-
tions on Graphics (TOG) 41, 4 (2022), 138.

Yan Li, Tianshu Wang, and Heung-Yeung Shum. 2002. Motion texture: a two-level
statistical model for character motion synthesis. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques. 465–472.

Dario Pavllo, David Grangier, and Michael Auli. 2018. Quaternet: A quaternion-based
recurrent model for human motion. arXiv preprint arXiv:1805.06485 (2018).

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel Van de Panne. 2018. Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM
Transactions On Graphics (TOG) 37, 4 (2018), 1–14.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021.
Amp: Adversarial motion priors for stylized physics-based character control. ACM
Transactions on Graphics (TOG) 40, 4 (2021), 1–20.

Ken Perlin. 1985. An image synthesizer. ACM Siggraph Computer Graphics 19, 3 (1985),
287–296.

Ken Perlin and Athomas Goldberg. 1996. Improv: A system for scripting interactive
actors in virtual worlds. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques. 205–216.

Katherine Pullen and Christoph Bregler. 2000. Animating by multi-level sampling. In
Proceedings Computer Animation 2000. IEEE, 36–42.

Katherine Pullen and Christoph Bregler. 2002. Motion capture assisted animation:
Texturing and synthesis. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques. 501–508.

Jia Qin, Youyi Zheng, and Kun Zhou. 2022. Motion In-betweening via Two-stage
Transformers. ACM Transactions on Graphics (TOG) 41, 6 (2022), 1–16.

Sigal Raab, Inbal Leibovitch, Peizhuo Li, Kfir Aberman, Olga Sorkine-Hornung, and
Daniel Cohen-Or. 2023a. MoDi: Unconditional Motion Synthesis from Diverse Data.
(2023).

Sigal Raab, Inbal Leibovitch, Guy Tevet, Moab Arar, Amit H Bermano, and Daniel
Cohen-Or. 2023b. Single Motion Diffusion. arXiv preprint arXiv:2302.05905 (2023).

Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang, Srinath Sridhar, and
Leonidas J Guibas. 2021. Humor: 3d human motion model for robust pose esti-
mation. In Proceedings of the IEEE/CVF international conference on computer vision.
11488–11499.

Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. 2019. Singan: Learning a genera-
tive model from a single natural image. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 4570–4580.

Mingyi Shi, Kfir Aberman, Andreas Aristidou, Taku Komura, Dani Lischinski, Daniel
Cohen-Or, and Baoquan Chen. 2020. Motionet: 3d human motion reconstruction
from monocular video with skeleton consistency. ACM Transactions on Graphics
(TOG) 40, 1 (2020), 1–15.

Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. 2008. Summarizing
visual data using bidirectional similarity. In Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 1–8.

Sebastian Starke, IanMason, and Taku Komura. 2022. Deepphase: Periodic autoencoders
for learning motion phase manifolds. ACM Transactions on Graphics (TOG) 41, 4
(2022), 1–13.

Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano, and Daniel Cohen-Or. 2022a.
MotionCLIP: Exposing Human Motion Generation to CLIP Space. arXiv preprint
arXiv:2203.08063 (2022).

Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H
Bermano. 2022b. Human motion diffusion model. arXiv preprint arXiv:2209.14916
(2022).

Truebones Motions Animation Studios. 2022. Truebones. https://truebones.gumroad.
com/ Accessed: 2022-9-2.

Jonathan Tseng, Rodrigo Castellon, and C Karen Liu. 2022. EDGE: Editable Dance
Generation From Music. arXiv preprint arXiv:2211.10658 (2022).

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural discrete representation learning.
Advances in neural information processing systems 30 (2017).

Jack M Wang, David J Fleet, and Aaron Hertzmann. 2007. Gaussian process dynamical
models for human motion. IEEE transactions on pattern analysis and machine
intelligence 30, 2 (2007), 283–298.

Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. 2009. State of the art in
example-based texture synthesis. Eurographics 2009, State of the Art Report, EG-STAR
(2009), 93–117.

Li-Yi Wei and Marc Levoy. 2000. Fast texture synthesis using tree-structured vector
quantization. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques. 479–488.

Mengyi Zhao, Mengyuan Liu, Bin Ren, Shuling Dai, and Nicu Sebe. 2023. Modiff:
Action-Conditioned 3D Motion Generation with Denoising Diffusion Probabilistic
Models. arXiv preprint arXiv:2301.03949 (2023).

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. 2019. On the continuity
of rotation representations in neural networks. In Conference on Computer Vision
and Pattern Recognition (CVPR). 5745–5753.

Yi Zhou, Zimo Li, Shuangjiu Xiao, Chong He, Zeng Huang, and Hao Li. 2018. Auto-
conditioned recurrent networks for extended complex human motion synthesis. In
International Conference on Learning Representations.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://www.youtube.com/watch?v=z_wpgHFSWss&t=658s
https://doi.org/10.1145/566570.566605
https://truebones.gumroad.com/
https://truebones.gumroad.com/

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Motion Representation
	3.2 Multi-stage Motion Synthesis
	3.3 Generative Motion Matching
	3.4 Extension to More Settings

	4 Experiments
	4.1 Novel Motion Synthesis
	4.2 More Generation Settings
	4.3 Effects of Hyper-parameters
	4.4 Time and Memory Consumption

	5 Applications
	6 User Interface
	7 Discussion and Conclusion
	Acknowledgments
	References

